The establishment and characterization of cell lines stably expressing human Ku80 tagged with enhanced green fluorescent protein.

نویسندگان

  • Manabu Koike
  • Aki Koike
چکیده

The Ku protein is a complex of two subunits, Ku70 and Ku80, and it plays a role in multiple nuclear processes, e.g., nonhomologous DNA-end-joining (NHEJ), chromosome maintenance, and transcription regulation. On the other hand, several studies have reported a cytoplasmic or cell surface localization of Ku in various cell types. The mechanism underlying the regulation of all the diverse functions of Ku is still unclear, though the mechanism that regulates the nuclear localization of Ku70 and Ku80 appears to play, at least in part, a key role in regulating the physiological function of Ku. In this study, we generated cell lines expressing the human Ku80 tagged with the green fluorescent protein (GFP) color variants in Ku80-deficient cells, i.e., xrs-6 derived from CHO-K1. Although Ku70, as well as Ku80, was undetectable in xrs-6 cells, it was seen in these transformants at a level similar to the level of CHO-K1. Furthermore, etoposide- and radiosensitive phenotype of xrs-6 cells were corrected by an introduction of the tagged Ku80. Moreover, the tagged Ku80 suppressed apoptosis triggered by DNA damage. These results demonstrate that fusion to the GFP color variants does not interfere with the functions of the Ku80 in the Ku-dependent DSB repair. Therefore, these transformants might be useful not only in the analysis of Ku80 behavior, but also in an analysis of the dynamics of the NHEJ repair process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetically Engineered Mesenchymal Stem Cells Stably Expressing Green Fluorescent Protein

Objective(s) Mesenchymal stem cells (MSCs) are nonhematopoietic stromal cells that are capable of differentiating into and contribute to the regeneration of mesenchymal tissues. Human mesenchymal stem cells (hMSCs) are ideal targets in cell transplantation and tissue engineering. Enhanced green fluorescent protein (EGFP) has been an important reporter gene for gene therapy. The aim of this stu...

متن کامل

Isolation and Characterization of a New Peroxisome Deficient CHO Mutant Cell Belonging to Complementation Group 12

We searched for novel Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by an improved method using peroxisome targeting sequence (PTS) of Pex3p (amino acid residues 1–40)-fused enhanced green fluorescent protein (EGFP). From mutagenized TKaEG3(1–40) cells, the wild-type CHO-K1 stably expressing rat Pex2p and of rat Pex3p(1–40)-EGFP, numerous cell colonies resistant to...

متن کامل

In vitro Labeling of Neural Stem Cells with Poly-L-Lysine Coated Super Paramagnetic Nanoparticles for Green Fluorescent Protein Transfection

Background: The magnetic nanoparticle-based transfection method is a relatively new technique for delivery of functional genes to target tissues. We aimed to evaluate the transfection efficiency of rat neural stem cell (NSC) using poly-L-lysine hydrobromide (PLL)-coated super paramagnetic iron oxide nanoparticles (SPION). Methods: The SPION was prepared and coated with PLL as transfection agent...

متن کامل

Highly Efficient Transfection of Dendritic Cells Derived from Esophageal Squamous Cell Carcinoma Patient: Optimization with Green Fluorescent Protein and Validation with Tumor RNA as a Tool for Immuno-genetherapy

This study was conducted to optimize a highly efficient mRNA transfection into dendritic cells (DC) derived from esophageal squamous cell carcinoma (ESCC) patients. Applying an electroporation technique, in vitro synthesized Green Fluorescent Protein (GFP) mRNA was transfected as an indicator into the DCs derived from a healthy donor. Flow cytometry revealed 84.9% transfection efficiency for DC...

متن کامل

Ku80 attentuates cytotoxicity induced by green fluorescent protein transduction independently of non-homologous end joining☆

The green fluorescent protein (GFP) is the most commonly used reporter protein for monitoring gene expression and protein localization in a variety of living and fixed cells, including not only prokaryotes, but also eukaryotes, e.g., yeasts, mammals, plants and fish. In general, it is thought that GFP is nontoxic to cells, although there are some reports on the side effect of GFP. Further, deta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of radiation research

دوره 45 1  شماره 

صفحات  -

تاریخ انتشار 2004